Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.467
Filtrar
1.
Sci Total Environ ; 926: 172019, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547980

RESUMO

The widespread application of herbicides raises concerns about their impact on non-target aquatic organisms. This study aimed to evaluate the toxicity of a commercially available herbicide formulation containing Bromoxynil+MCPA (2-Methyl-4-chlorophenoxyacetic acid) on Cirrhinus mrigala (economically significant fish). A total of 210 juvenile fish were subjected to a triplicate experimental setup, with 70 fish allocated to each replicate, exposed to seven different concentrations of herbicide: 0 mg/L, 0.133 mg/L, 0.266 mg/L, 0.4 mg/L, 0.5 mg/L, 0.66 mg/L, and 0.8 mg/L, respectively, for a duration of 96 h. The median lethal concentration (LC50) was determined to be 0.4 mg/L. Significant hematological alterations were observed, including decreases in RBC counts, hemoglobin, hematocrit, and lymphocyte counts, along with an increase in erythrocyte indices. Biochemical analysis revealed elevated levels of neutrophils, WBCs, bilirubin, urea, creatinine, ALT, AST, ALP, and glucose in treated groups. Morphological abnormalities in erythrocytes and histopathological changes in gills, liver, and kidneys were noted. Pathological alterations in gills, liver and kidneys including epithelial cell uplifting, lamellar fusion, hepatolysis, and renal tubule degeneration were observed. Oxidative stress biomarkers such as TBARS (Thiobarbituric Acid Reactive Substance), ROS (Reactive Oxygen Species), and POD (Peroxides) activity increased, while antioxidant enzymatic activities decreased as toxicant doses increased from low to high concentrations. The study reveals that Bromoxynil+MCPA significantly disrupts physiological and hematobiochemical parameters in Cirrhinus mrigala, which highlights the substantial aquatic risks. In conclusion, the herbicide formulation induced significant alterations in various fish biomarkers, emphasizing their pivotal role in assessing the environmental impact of toxicity. This multi-biomarker approach offers valuable insights regarding the toxicological effects, thereby contributing substantially to the comprehensive evaluation of environmental hazards.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Cyprinidae , Herbicidas , Poluentes Químicos da Água , Animais , Herbicidas/toxicidade , Ácido 2-Metil-4-clorofenoxiacético/toxicidade , Nitrilas , Biomarcadores , Fígado , Brânquias/patologia , Poluentes Químicos da Água/toxicidade
2.
Environ Toxicol Pharmacol ; 107: 104429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527596

RESUMO

Pesticides are contaminants run-offs from agricultural areas with a global concern due to their toxicity for non-target organisms. The Brazilian Health Surveillance Agency reported about 63% of the food contain pesticide residues. Glyphosate is a herbicide used worldwide but its toxicity is not a consensus among specialists around the world. AMPA (aminomethylphosphonic acid) is a glyphosate metabolite that can be more toxic than the parental molecule. Melanoma murine B16-F1 cells were exposed to glyphosate and AMPA to investigate the cell profile and possible induction to a more malignant phenotype. Glyphosate modulated the multi-drug resistance mechanisms by ABCB5 gene expression, decreasing cell attachment, increasing cell migration and inducing extracellular vesicles production, and the cells exposed to AMPA revealed potential damages to DNA. The present study observed that AMPA exhibits high cytotoxicity, which suggests a potential impact on non-tumor cells, which are, in general, more susceptible to chemical exposure. Conversely, glyphosate favored a more metastatic and chemoresistant behavior in cancer cells, highlighting the importance of additional research in this area.


Assuntos
Herbicidas , Melanoma , Organofosfonatos , Camundongos , Animais , 60658 , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glicina , Herbicidas/toxicidade
3.
BMC Genomics ; 25(1): 277, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486176

RESUMO

BACKGROUND: Indian jointvetch (Aeschynomene indica) is a common and pernicious weed found in the upland direct-seeding rice fields in the lower reaches of the Yangtze River in China. However, there are few reports on the degree of harm, genetic characteristics, and management methods of this weed. The purpose of this study is to clarify the harm of Indian jointvetch to upland direct-seeding rice, analyze the genetic characteristics of this weed based on chloroplast genomics and identify its related species, and screen herbicides that are effective in managing this weed in upland direct-seeding rice fields. RESULTS: In a field investigation in upland direct-seeding rice paddies in Shanghai and Jiangsu, we determined that the plant height and maximum lateral distance of Indian jointvetch reached approximately 134.2 cm and 57.9 cm, respectively. With Indian jointvetch present at a density of 4/m2 and 8/m2, the yield of rice decreased by approximately 50% and 70%, respectively. We further obtained the first assembly of the complete chloroplast (cp.) genome sequence of Indian jointvetch (163,613 bp). There were 161 simple sequence repeats, 166 long repeats, and 83 protein-encoding genes. The phylogenetic tree and inverted repeat region expansion and contraction analysis based on cp. genomes demonstrated that species with closer affinity to A. indica included Glycine soja, Glycine max, and Sesbania cannabina. Moreover, a total of 3281, 3840, and 3838 single nucleotide polymorphisms were detected in the coding sequence regions of the cp. genomes of S. cannabina voucher IBSC, G. soja, and G. max compared with the A. indica sequence, respectively. A greenhouse pot experiment indicated that two pre-emergence herbicides, saflufenacil and oxyfluorfen, and two post-emergence herbicides, florpyrauxifen-benzyl and penoxsulam, can more effectively manage Indian jointvetch than other common herbicides in paddy fields. The combination of these two types of herbicides is recommended for managing Indian jointvetch throughout the entire growth period of upland direct-seeding rice. CONCLUSIONS: This study provides molecular resources for future research focusing on the identification of the infrageneric taxa, phylogenetic resolution, and biodiversity of Leguminosae plants, along with recommendations for reliable management methods to control Indian jointvetch.


Assuntos
Fabaceae , Genoma de Cloroplastos , Herbicidas , Oryza , Filogenia , China , Herbicidas/toxicidade , Oryza/genética
4.
Sci Total Environ ; 923: 171526, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458447

RESUMO

Herbicides have been intensively used for weed control, raising concerns about their potentially adverse effects on non-target organisms. Research on the effects of these common agrochemicals on beneficial insects and the ecosystem services they provide (e.g., predation and pollination) is scarce. Therefore, we tested whether a commercial formulation comprising a mixture of mesotrione and atrazine was detrimental to adult females and larvae of the Neotropical predatory social wasp Polistes satan, which is an effective natural enemy of crop pests. Wasps were individually fed syrups contaminated with different concentrations of the herbicide above and below the maximum label rate (MLR = 12 mL/L). Survival was assessed. The locomotor activity, immune response, and midgut morphology of adults as well as the immune response of the larvae were also studied. Herbicide concentrations far above the MLR (12, 40, and 100 times) caused adult mortality, whereas lower concentrations (0.5, 1, and 6 times) did not. Herbicide exposure at 0.5 to 12 times the MLR increased adult activity. Adult exposure at 0.1 or 0.5 times the MLR did not affect melanotic encapsulation of foreign bodies but led to changes in the morphology of the midgut epithelium and peritrophic matrix. In larvae, the ingestion of herbicide at 0.1 or 0.2 times the MLR (corresponding to 9.6 and 19.2 ng of herbicide per individual) did not cause mortality but decreased their melanization-encapsulation response. Increased locomotor activity in herbicide-exposed adults can affect their foraging activity. The altered midgut morphology of adults coupled with the decreased immune response in larvae caused by herbicide exposure at realistic concentrations can increase the susceptibility of wasps to infections. Therefore, herbicides are toxic to predatory wasps.


Assuntos
Atrazina , Cicloexanonas , Herbicidas , Vespas , Animais , Feminino , Atrazina/toxicidade , Larva , Comportamento Predatório , Ecossistema , Herbicidas/toxicidade
5.
Environ Geochem Health ; 46(4): 132, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483701

RESUMO

We determined the distribution, fate, and health hazards of dimethenamid-P, metazachlor, and pyroxasulfone, the effective pre-emergence herbicides widely used both in urban and agricultural settings globally. The rate-determining phase of sorption kinetics of these herbicides in five soils followed a pseudo-second-order model. Freundlich isotherm model indicated that the herbicides primarily partition into heterogeneous surface sites on clay minerals and organic matter (OM) and diffuse into soil micropores. Principal component analysis revealed that soil OM (R2, 0.47), sand (R2, 0.56), and Al oxides (R2, 0.33) positively correlated with the herbicide distribution coefficient (Kd), whereas clay (R2, ‒ 0.43), silt (R2, ‒ 0.51), Fe oxides (R2, ‒ 0.02), alkaline pH (R2, ‒ 0.57), and EC (R2, ‒ 0.03) showed a negative correlation with the Kd values. Decomposed OM rich in C=O and C-H functional groups enhanced herbicide sorption, while undecomposed/partially-decomposed OM facilitated desorption process. Also, the absence of hysteresis (H, 0.27‒0.88) indicated the enhanced propensity of herbicide desorption in soils. Leachability index (LIX, < 0.02-0.64) and groundwater ubiquity score (GUS, 0.02‒3.59) for the soils suggested low to moderate leaching potential of the herbicides to waterbodies, indicating their impact on water quality, nontarget organisms, and food safety. Hazard quotient and hazard index data for human adults and adolescents suggested that exposure to soils contaminated with herbicides via dermal contact, ingestion, and inhalation poses minimal to no non-carcinogenic risks. These insights can assist farmers in judicious use of herbicides and help the concerned regulatory authorities in monitoring the safety of human and environmental health.


Assuntos
Herbicidas , Poluentes do Solo , Humanos , Adolescente , Solo , Herbicidas/toxicidade , Herbicidas/análise , Argila , Fazendas , Poluentes do Solo/análise , Adsorção , Saúde Ambiental , Óxidos
6.
Mar Pollut Bull ; 201: 116237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457881

RESUMO

Our laboratory study looked into how pesticides affect the foraminifera species Heterostegina depressa and their obligatory algal endosymbionts. We incubated the foraminifera separately with different types of pesticides at varying concentrations (1 %, 0.01 % and 0.0001 %); we included the insecticide Confidor© (active substance: imidacloprid), the fungicide Pronto©Plus (tebuconazole), and the herbicide Roundup© (glyphosate). Our evaluation focused on the symbiont's photosynthetically active area (PA), and the uptake of dissolved inorganic carbon (DIC) and nitrogen (nitrate) to determine the vitality of the foraminifera. Our findings showed that even the lowest doses of the fungicide and herbicide caused irreparable damage to the foraminifera and their symbionts. While the insecticide only deactivated the symbionts (PA = 0) at the highest concentration (1 %), the fungicide, and herbicide caused complete deactivation even at the lowest levels provided (0.0001 %). The fungicide had the strongest toxic effect on the foraminiferal host regarding reduced isotope uptake. In conclusion, all pesticides had a negative impact on the holosymbiont, with the host showing varying degrees of sensitivity towards different types of pesticides.


Assuntos
Foraminíferos , Fungicidas Industriais , Herbicidas , Inseticidas , Praguicidas , Recifes de Corais , Foraminíferos/fisiologia , Praguicidas/toxicidade , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade
7.
Environ Pollut ; 347: 123669, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460584

RESUMO

Glyphosate (GLY)-based herbicides (GBHs) are the most commonly applied pesticide worldwide, and non-target organisms (e.g., animals) are now regularly exposed to GLY and GBHs due to the accumulation of these chemicals in many environments. Although GLY/GBH was previously considered to be non-toxic, growing evidence indicates that GLY/GBH negatively affects some animal taxa. However, there has been no systematic analysis quantifying its toxicity to animals. Therefore, we used a meta-analytical approach to determine whether there is a demonstrable effect of GLY/GBH toxicity across animals. We further addressed whether the effects of GLY/GBH vary due to (1) taxon (invertebrate vs. vertebrate), (2) habitat (aquatic vs. terrestrial), (3) type of biological response (behavior vs. physiology vs. survival), and (4) dosage or concentration of GLY/GBH. Using this approach, we also determined whether adjuvants (e.g., surfactants) in commercial formulations of GBHs increased toxicity for animals relative to exposure to GLY alone. We analyzed 1282 observations from 121 articles. We conclude that GLY is generally sub-lethally toxic for animals, particularly for animals in aquatic or marine habitats, and that toxicity did not exhibit dose-dependency. Yet, our analyses detected evidence for widespread publication bias so we encourage continued experimental investigations to better understand factors influencing GLY/GBH toxicity to animals.


Assuntos
60658 , Herbicidas , Animais , Glicina/toxicidade , Glicina/química , Herbicidas/toxicidade , Ecossistema , Tensoativos
8.
Chemosphere ; 353: 141431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401859

RESUMO

Assessing a complex mixture of pesticides at the impacted sites has been challenging for risk assessors for 50 years. The default assumption is that at low concentrations, pesticides interact additively with one another; thus, the risk posed by each component of a complex mixture could be simply added up. The EPA interaction-based hazard index (HIInteraction) modifies this assumption using a binary weight-of-evidence (BINWOE). However, data gaps often preclude HIInteraction use at most sites. This study evaluated these assumptions using the BINWOE to estimate the hazard index (HI) of select pesticide mixtures. The lack of in vivo binary interaction data led us to use a cell line, SH-SY5Y, to obtain the data necessary for the BINWOE approach. In the risk assessment, we considered the most active exposure scenario inhaling a mixture of volatile pesticides from contaminated soil and groundwater. The potential interactions between pesticides in 15 binary mixtures were investigated using the MTT assay in SH-SY5Y cells. Our findings showed that 60% of the binary mixtures elicited synergism (in at least one concentration), 27% displayed antagonism, and 13% showed additive effects in SH-SY5Y cells. Combining human safety data with in vitro interaction data indicated that adults and toddlers were at the highest risk when considering industrial and commercial land use, respectively, compared to other subpopulations. Incorporating interaction data into the risk assessment either increased the risk by up to 20% or decreased the risk by 2%, depending on the mixture. Our results demonstrate the predominant synergistic interactions, even at low concentrations, altered risk characterization at the complex operating site. Most concerning, organochlorine pesticides with the same mechanism of action did not follow dose additivity when evaluated by SH-SY5Y cell lines. Based on our observations, we caution that current HI methods based on additivity assumptions may underestimate the risk of organochlorine mixtures.


Assuntos
Herbicidas , Neuroblastoma , Praguicidas , Humanos , Praguicidas/toxicidade , Herbicidas/toxicidade , Interações Medicamentosas , Misturas Complexas/toxicidade
9.
Nat Commun ; 15(1): 1783, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413588

RESUMO

Predicting the magnitude of herbicide impacts on marine primary productivity remains challenging because the extent of worldwide herbicide pollution in coastal waters and the concentration-response relationships of phytoplankton communities to multiple herbicides are unclear. By analyzing the spatiotemporal distribution of herbicides at 661 bay and gulf stations worldwide from 1990 to 2022, we determined median, third quartile and maximum concentrations of 12 triazine herbicides of 0.18 nmol L-1, 1.27 nmol L-1 and 29.50 nmol L-1 (95%Confidence Interval: CI 1.06, 1.47), respectively. Under current herbicide stress, phytoplankton primary productivity was inhibited by more than 5% at 25% of the sites and by more than 10% at 10% of the sites (95%CI 3.67, 4.34), due to the inhibition of highly abundant sensitive species, community structure/particle size succession (from Bacillariophyta to Dinophyceae and from nano-phytoplankton to micro-phytoplankton), and resulting growth rate reduction. Concurrently, due to food chain cascade effects, the dominant micro-zooplankton population shifted from larger copepod larvae to smaller unicellular ciliates, which might prolong the transmission process in marine food chain and reduce the primary productivity transmission efficiency. As herbicide application rates on farmlands worldwide are correlated with residues in their adjacent seas, a continued future increase in herbicide input may seriously affect the stability of coastal waters.


Assuntos
Diatomáceas , Herbicidas , Animais , Herbicidas/toxicidade , Zooplâncton/fisiologia , Fitoplâncton/fisiologia , Água do Mar/química , Ecossistema
10.
BMC Plant Biol ; 24(1): 119, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369476

RESUMO

Symbiotic Methylobacterium comprise a significant portion of the phyllospheric microbiome, and are known to benefit host plant growth, development, and confer tolerance to stress factors. The near ubiquitous use of the broad-spectrum herbicide, glyphosate, in farming operations globally has necessitated a more expansive evaluation of the impacts of the agent itself and formulations containing glyphosate on important components of the plant phyllosphere, including Methylobacterium.This study provides an investigation of the sensitivity of 18 strains of Methylobacterium to glyphosate and two commercially available glyphosate-based herbicides (GBH). Nearly all strains of Methylobacterium showed signs of sensitivity to the popular GBH formulations WeatherMax® and Transorb® in a modified Kirby Bauer experiment. However, exposure to pure forms of glyphosate did not show a significant effect on growth for any strain in both the Kirby Bauer test and in liquid broth, until polysorbate-20 (Tween20) was added as a surfactant. Artificially increasing membrane permeability through the introduction of polysorbate-20 caused a 78-84% reduction in bacterial cell biomass relative to controls containing glyphosate or high levels of surfactant only (0-9% and 6-37% reduction respectively). Concentrations of glyphosate as low as 0.05% w/v (500 µg/L) from both commercial formulations tested, inhibited the culturability of Methylobacterium on fresh nutrient-rich medium.To better understand the compatibility of important phyllospheric bacteria with commercial glyphosate-based herbicides, this study endeavours to characterize sensitivity in multiple strains of Methylobacterium, and explore possible mechanisms by which toxicity may be induced.


Assuntos
60658 , Herbicidas , Herbicidas/toxicidade , Glicina/toxicidade , Polissorbatos , Tensoativos
11.
Environ Sci Pollut Res Int ; 31(10): 15872-15884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302837

RESUMO

Glyphosate-based herbicides (GBH) are the most widely used pesticides globally. Studies have indicated that they may increase the risk of various organic dysfunctions. Herein, we verified whether exposure to GBH during puberty increases the susceptibility of male and female mice to obesity when they are fed a high-fat diet (HFD) in adulthood. From the 4th-7th weeks of age, male and female C57Bl/6 mice received water (CTL group) or 50 mg GBH /kg body weight (BW; GBH group). From the 8th-21st weeks of age, the mice were fed a standard diet or a HFD. It was found that pubertal GBH exposure exacerbated BW gains and hyperphagia induced by HFD, but only in female GBH-HFD mice. These female mice also exhibited high accumulation of perigonadal and subcutaneous fat, as well as reduced lean body mass. Both male and female GBH-HFD displayed hypertrophic white adipocytes. However, only in females, pubertal GBH exposure aggravated HFD-induced fat accumulation in brown adipocytes. Furthermore, GBH increased plasma cortisol levels by 80% in GBH-HFD males, and 180% in GBH-HFD females. In conclusion, pubertal GBH exposure aggravated HFD-induced obesity, particularly in adult female mice. This study provides novel evidence that GBH misprograms lipid metabolism, accelerating the development of obesity when individuals are challenged by a second metabolic stressor, such as an obesogenic diet.


Assuntos
Dieta Hiperlipídica , Herbicidas , Camundongos , Masculino , Feminino , Animais , Dieta Hiperlipídica/efeitos adversos , 60658 , Herbicidas/toxicidade , Obesidade/induzido quimicamente , Metabolismo dos Lipídeos
12.
Aquat Toxicol ; 268: 106851, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325057

RESUMO

The escalating use of pesticides in agriculture for enhanced crop productivity threatens aquatic ecosystems, jeopardizing environmental integrity and human well-being. Pesticides infiltrate water bodies through runoff, chemical spills, and leachate, adversely affecting algae, vital primary producers in marine ecosystems. The repercussions cascade through higher trophic levels, underscoring the need for a comprehensive understanding of the interplay between pesticides, algae, and the broader ecosystem. Algae, susceptible to pesticides via spillage, runoff, and drift, experience disruptions in community structure and function, with certain species metabolizing and bioaccumulating these contaminants. The toxicological mechanisms vary based on the specific pesticide and algal species involved, particularly evident in herbicides' interference with photosynthetic activity in algae. Despite advancements, gaps persist in comprehending the precise toxic effects and mechanisms affecting algae and non-target species. This review consolidates information on the exposure and toxicity of diverse pesticides and herbicides to aquatic algae, elucidating underlying mechanisms. An emphasis is placed on the complex interactions between pesticides/herbicides, nutrient content, and their toxic effects on algae and microbial species. The variability in the harmful impact of a single pesticide across different algae species underscores the necessity for further research. A holistic approach considering these interactions is imperative to enhance predictions of pesticide effects in marine ecosystems. Continued research in this realm is crucial for a nuanced understanding of the repercussions of pesticides and herbicides on aquatic ecosystems, mainly algae.


Assuntos
Herbicidas , Praguicidas , Poluentes Químicos da Água , Humanos , Ecossistema , Poluentes Químicos da Água/toxicidade , Praguicidas/análise , Herbicidas/toxicidade , Herbicidas/análise , Agricultura
13.
Environ Toxicol Pharmacol ; 106: 104381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311300

RESUMO

In recent decades, glyphosate and glyphosate-based herbicides (GBH) have been extensively used in agriculture all over the world. Initially, they were considered safe, but rising evidence suggests that these molecules reach the central nervous system producing metabolic, functional, and permanent alterations that impact cognition and behavior. This theoretical and non-systematic review involved searching, integrating, and analyzing preclinical evidence regarding the effects of acute, sub-chronic, and chronic exposure to glyphosate and GBH on cognition, behavior, neural activity, and development in adult and juvenile rodents following perinatal exposition. In addition, this review gathers the mechanisms underlying the neurotoxicity of glyphosate mediating cognitive and behavioral alterations. Furthermore, clinical evidence of the effects of exposition to GBH on human health and its possible link with several neurological disorders was revised.


Assuntos
Herbicidas , Síndromes Neurotóxicas , Adulto , Humanos , Feminino , Gravidez , 60658 , Cognição , Síndromes Neurotóxicas/etiologia , Herbicidas/toxicidade , Agricultura
14.
Environ Toxicol Pharmacol ; 106: 104383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320722

RESUMO

In this study, the evaluation of a 2,4-D dimethylammonium based-herbicide impacted on Nile tilapia was done. The effects focus on Acetylcholinesterase (AChE) expression in the brain, gill, muscle, and plasma using antibody techniques. Our findings revealed a decrease in AChE expression with prolonged exposure. For these, AChE was purified using hydroxyapatite column chromatography. Moreover, the isolated protein was characterized as AChE by Polyclonal Ab specific to AChE through the Western blot. For interpretation at the cellular and molecular level, we employed two analytical techniques, histology, and optical coherence tomography (OCT). Alterations in the gill, liver, and muscle were observed to increase with increased exposure time. Field study concludes that AChE could serve as a biomarker to detect herbicide contamination in water and its accumulation in aquatic animals. This study may aid in surveillance and strategy formulation for managing contamination from such substances in various water sources.


Assuntos
Ciclídeos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Herbicidas , Animais , Acetilcolinesterase , Herbicidas/toxicidade , Água , Ácido 2,4-Diclorofenoxiacético
15.
Environ Pollut ; 345: 123504, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325509

RESUMO

Low glyphosate doses that produce hormesis may alter the susceptibility to herbicides of weeds or enhance their propagation and dispersal. The objective of this work was to evaluate the hormetic effects of glyphosate on the vegetative, phenological and reproductive development in resistant (R) and susceptible (S) Conyza sumatrensis biotypes. The glyphosate resistance level of biotype R was 11.2-fold compared to the S biotype. Glyphosate doses <11.25 g ae ha-1 induced temporary and permanent hormetic effects for the number of leaves, plant height and dry mass accumulation up to 28 d after application in both R and S biotypes. The S biotype required 15-19% fewer thermal units at 1.4 and 2.8 g ae ha-1 glyphosate than untreated plants to reach the bolting stage. Also, this biotype had less thermal units associated with the appearance (1225 vs 1408 units) and opening (1520 vs 1765 units) of the first capitulum than the R biotype. In addition, glyphosate affected reproductive traits of both biotypes compared to their controls, increasing the number of capitulum's and seeds per plant up to 37 and 41% (at 2.8 and 0.7 g ae h-1, respectively) in the S biotype, and by 48 and 114% (both at 5.6 g ae ha-1) in the R biotype. Depending on environmental parameters, glyphosate may or may not cause hormetic effects on the vegetative and phenological development of C. sumatrenis biotypes; however, this herbicide increases the speed and fecundity of reproduction, regardless of the glyphosate susceptibility level, which can alter the population dynamics and glyphosate susceptibility of future generations.


Assuntos
Conyza , Herbicidas , 60658 , Glicina/toxicidade , Hormese , Resistência a Herbicidas , Herbicidas/toxicidade , Plantas
16.
Environ Toxicol ; 39(5): 3040-3054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314887

RESUMO

Studies on the effects of glyphosate (GlyP) and glyphosate-based herbicides (GBHs) on cerebellar development are extremely limited. This study examined the effects of maternal exposure to GlyP and GBH on rat cerebellar development in male offspring. From day 6 of gestation until day 21 postpartum at weaning, dams were given GlyP at 1.5% or 3.0% in diet or GBH at 1.0% in drinking water (corresponding to 0.36% GlyP). At weaning, GBH exposure was linked to increased numbers of DCX+ migrating granule cells in the cortex and TUNEL+ apoptotic cells in the internal granular layer (IGL), suggesting the disappearance of mismigrated granule cells via apoptosis. GBH also upregulated Nr4a3 and downregulated Cdk5 in the cerebellar vermis, suggesting a causal relation with the impaired granule cell development at this time. GlyP (3.0%) tended to increase in the number of DCX+ migrating granule cells in the IGL and upregulated Nr4a3 at weaning. Both compounds also upregulated genes related to granule cell migration (Astn1, Astn2, Nfia, and/or Nfix) at weaning and in adulthood, which might be an ameliorative response to delayed granule cell migration. Moreover, GBH induced Purkinje cell misalignment at weaning, which could be the result of delayed granule cell migration. In adulthood, GBH was associated with upregulation of the reelin signaling-related genes Reln, Dab1, and Efnb1, suggesting a compensatory response to Purkinje cell misalignment. GlyP induced the same gene expression changes. These results suggest that GBH reversibly disrupts cerebellar development, primarily by targeting granule cell migration and differentiation, whereas GlyP exhibited similar toxic potential as GBH.


Assuntos
60658 , Herbicidas , Humanos , Feminino , Ratos , Masculino , Animais , Herbicidas/toxicidade , Exposição Materna/efeitos adversos , Glicina/toxicidade , Diferenciação Celular
17.
J Alzheimers Dis ; 97(4): 1703-1726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306038

RESUMO

Background: Agent Orange (AO) is a Vietnam War-era herbicide that contains a 1 : 1 ratio of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). Emerging evidence suggests that AO exposures cause toxic and degenerative pathologies that may increase the risk for Alzheimer's disease (AD). Objective: This study investigates the effects of the two main AO constituents on key molecular and biochemical indices of AD-type neurodegeneration. Methods: Long Evans rat frontal lobe slice cultures treated with 250µg/ml of 2,4-D, 2,4,5-T, or both (D + T) were evaluated for cytotoxicity, oxidative injury, mitochondrial function, and AD biomarker expression. Results: Treatment with the AO constituents caused histopathological changes corresponding to neuronal, white matter, and endothelial cell degeneration, and molecular/biochemical abnormalities indicative of cytotoxic injury, lipid peroxidation, DNA damage, and increased immunoreactivity to activated Caspase 3, glial fibrillary acidic protein, ubiquitin, tau, paired-helical filament phosphorylated tau, AßPP, Aß, and choline acetyltransferase. Nearly all indices of cellular injury and degeneration were more pronounced in the D + T compared with 2,4-D or 2,4,5-T treated cultures. Conclusions: Exposures to AO herbicidal chemicals damage frontal lobe brain tissue with molecular and biochemical abnormalities that mimic pathologies associated with early-stage AD-type neurodegeneration. Additional research is needed to evaluate the long-term effects of AO exposures in relation to aging and progressive neurodegeneration in Vietnam War Veterans.


Assuntos
Doença de Alzheimer , Herbicidas , Ratos , Animais , Agente Laranja , Herbicidas/toxicidade , Doença de Alzheimer/metabolismo , Ratos Long-Evans , Ácido 2,4,5-Triclorofenoxiacético
18.
Environ Pollut ; 345: 123530, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341063

RESUMO

Colorectal cancer (CRC) is a widespread malignancy worldwide, and its relationship with pesticide exposure remains inconclusive. This study aims to elucidate the relationship between pesticide exposure and the risk of colon, rectal, or CRC, focusing on specific pesticide groups. We conducted an extensive literature search for peer-reviewed studies published up to March 31, 2023. Summary risk ratios (RR) and their corresponding 95% confidence intervals (CI) were calculated using stratified random-effects meta-analyses, taking into account different types of exposure and outcomes, and various exposed populations and pesticide subgroups. This approach aimed to address the substantial heterogeneity observed across the literature. We also assessed heterogeneity and potential small-study effects to ensure the robustness of our findings. From the 50 studies included in this review, 33 contributed to the meta-analysis. Our results indicate a significant association between herbicide exposure and colon cancer in both lifetime-days (LDs) (RR = 1.20; 95% CI = 1.01-1.42) and intensity-weighted lifetime-days (IWLDs) (RR = 1.29, 95% CI = 1.12-1.49) exposure. Similarly, insecticide exposure was associated with an increased risk of colon cancer in IWLDs (RR = 1.32; 95% CI = 1.02-1.70) exposure, and rectal cancer in any versus never exposure (RR = 1.21; 95% CI = 1.07-1.36), IDs (RR = 1.86; 95% CI = 1.30-2.67) and IWLDs (RR = 1.70; 95% CI = 1.03-2.83) exposure. While these findings suggest significant associations of herbicide and insecticide exposure with colon and rectal cancer, respectively, further research is needed to explore the impact of other pesticide groups and deepen our understanding of pesticide exposure. These results have important implications for policymakers and regulators, underscoring the need for stricter supervision and regulation of pesticide use to mitigate CRC risk.


Assuntos
Neoplasias do Colo , Herbicidas , Inseticidas , Praguicidas , Neoplasias Retais , Humanos , Praguicidas/toxicidade , Neoplasias do Colo/induzido quimicamente , Herbicidas/toxicidade , Neoplasias Retais/induzido quimicamente
19.
J Environ Sci Health B ; 59(4): 183-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38400726

RESUMO

Glyphosate is an ingredient widely used in various commercial formulations, including Roundup®. This study focused on tight junctions and the expression of inflammatory genes in the small intestine of chicks. On the sixth day of embryonic development, the eggs were randomly assigned to three groups: the control group (CON, n = 60), the glyphosate group (GLYP, n = 60), which received 10 mg of active glyphosate/kg egg mass, and the Roundup®-based glyphosate group also received 10 mg of glyphosate. The results indicated that the chicks exposed to glyphosate or Roundup® exhibited signs of oxidative stress. Additionally, histopathological alterations in the small intestine tissues included villi fusion, complete fusion of some intestinal villi, a reduced number of goblet cells, and necrosis of some submucosal epithelial cells in chicks. Genes related to the small intestine (ZO-1, ZO-2, Claudin-1, Claudin-3, JAM2, and Occludin), as well as the levels of pro-inflammatory cytokines (IFNγ, IL-1ß, and IL-6), exhibited significant changes in the groups exposed to glyphosate or Roundup® compared to the control group. In conclusion, the toxicity of pure glyphosate or Roundup® likely disrupts the small intestine of chicks by modulating the expression of genes associated with tight junctions in the small intestine.


Assuntos
60658 , Herbicidas , Animais , Herbicidas/toxicidade , Herbicidas/metabolismo , Glicina/toxicidade , Junções Íntimas/metabolismo , Galinhas/genética
20.
Sci Total Environ ; 922: 171062, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38401717

RESUMO

The following research provides novel and relevant insights into potential environmental consequences of combination of various organic cations with commercial systemic herbicide (dicamba), in accordance with a 'herbicidal ionic liquids' (HILs) strategy. Toxicity assays of five dicamba-based HILs comprising different hydrophobic and hydrophilic cations, namely choline [CHOL][DIC], ethyl betainate [BETC2][DIC], decyl betainate [BETC10][DIC], hexadecyl betainate [BETC16][DIC] and didecyldimethylammonium [DDA][DIC]), have been tested towards bacteria (Pseudomonas putida, Escherichia coli, Bacillus subtilis), algae (Chlorella vulgaris), fresh and marine water crustaceans (Daphnia magna, Artemia franciscana). The structure of respective substituents in the cation emerged as a decisive determinant of toxicity in the case of tested species. In consequence, small ions of natural origin ([CHOL] and [BETC2]) demonstrated toxicity numerous orders of magnitude lower compared to fully synthetic [DDA]. These results emphasize the role of cations' hydrophobicity, as well as origin, in the observed acute toxic effect. Time-dependent toxicity assays also indicated that betaine-type cations comprising an ester bond can rapidly transform into less harmful substances, which can generally result in a reduction in toxicity by even several orders of magnitude. Nonetheless, these findings challenge the concept of ionic liquids with herbicidal activity and give apparent parallels to adjuvant-dependent toxicity issues recently noted in typical herbicidal formulations.


Assuntos
Chlorella vulgaris , Herbicidas , Líquidos Iônicos , Pseudomonas putida , Herbicidas/toxicidade , Herbicidas/química , Dicamba/química , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Cátions/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...